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Diffusion in a Bistable Potential: A Systematic 
WKB Treatment 
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We study the distribution P of a single stochastic variable, the evolution of 
which is described by a Fokker-Planck equation with a first moment 
deriving from a bistable potential, in the limit of constant and small diffusion 
coefficient. A systematic WKB analysis of the lowest eigenmodes of the 
equivalent Schr6dinger-like equation yields the following results: the final 
approach to equilibrium is governed by the Kramers high-viscosity rate, 
which is shown to be exact in this limit; for intermediate times, we show 
that Suzuki's scaling statement does give the correct behavior for the 
transition between the one-peak and the two-peak structure for P. However, 
the intermediate time domain also contains a second "half," where P enters 
the diffusive equilibrium regions, characterized by a time scale of the same 
order as Suzuki's time. 

KEY WORDS: Nonlinear Fokker-Planck equation ; instabil i ty; diffusion. 

1. I N T R O D U C T I O N  

There  has been  recent ly  cons iderab le  in teres t  in the s tudy o f  f luctuat ions in 
non l inea r  systems. In  this p a p e r  we t rea t  the  s implest  mode l  descr ib ing such a 

s i tuat ion,  namely  tha t  o f  a single, one-d imens iona l ,  s tochast ic  var iable  x, the  
d i s t r ibu t ion  o f  which, P(x,  t), obeys  the  genera l ized  F o k k e r - P l a n c k  equa t ion :  

- -  = - -  0 ~2p ~ e  ~ [ U ' ( x ) P ]  + - -  (1) 
~t c~x Ox 2 

where  U'(x)  = dU(x) /dx  is a non l inear  funct ion o f x .  M o r e  precisely,  we will 
specialize to  the  case where  U '  der ives  f rom a bis table  " p o t e n t i a l "  U (Fig.  1). 
Here  0 is a cons tan t  ( independen t  o f  x). 

1 Groupe de Physique des Solides de l'Ecole Normale Sup~rieure (associ~ au Centre 
National de la Recherche Scientifique), Universit6 Paris VII, Paris, France. 

2 D6partement de Physique, UER de Sciences Exactes et Naturelles, Universit6 de 
Picardie, Amiens, France. 

41 5 

0022-4715/7911000-0415503.00/0 �9 1979 Plenum Publishing Corporation 



416 B. Caroli ,  C. Caroli ,  and B. Roulet  

, U(x) m 

X 

Fig. 1. A bistable potential U. 

Equation (1) can be considered either as describing a Brownian motion 
in the presence of an external nonlinear force <1> (0 is then proportional to the 
temperature of the viscous medium), or, possibly, as resulting from the 
truncated Kramers-Moyal  development of the master equation for an 
extensive variable 3 (0 is then proportional to the inverse volume of the system). 
In any case, we will make the assumption that 0 is small, or, more precisely, 
that 0 << AU, where AU is the height of the bump separating the valleys of U 
(Fig. 1). 

Although this problem may be considered rather academic, it has the 
interest of being a first step toward the study of more realistic nonlinear 
problems involving several or many stochastic degrees of freedom, for example, 
relaxation from far from equilibrium situations or.the dynamics of appearance 
of dissipative structures. 

This model has been studied, from various points of view, in several 
recent articles: 

1. Van Kampen ~1~ and Tomita et al. ~3~ have reduced the Fokker-Planck 
equation to a Schr6dinger-like form and studied the normal mode decom- 
position of P(x,  t); van Kampen was able to distinguish qualitatively among 
different regimes corresponding to various time scales. In particular, these 
authors calculate the longest relaxation time, which describes the escape of 
particles from one of  the potential wells to the other after local equilibrium 
has been established. This time corresponds to the inverse Kramers reaction 
rate ~ in the high-viscosity limit. We will call the corresponding time domain 
the Kramers regime. 

2. SuzukF 5> has studied specifically the case where the system starts with 
an initial distribution concentrated in the vicinity of the instability point 
x = 0 (where U has its local maximum). He claims that, for small 0, one can 
distinguish between: (i) an initial diffusive regime, at small times, where U 
can be approximated by its antiharmonic development around its local 

3 We will not consider here the problem of the validity of such a procedure, which has 
been and still is the subject of discussion by several authors. ~2~ 
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maximum; and (ii) an intermediate "scaling" regime, where diffusion (i.e., 
fluctuation) effects would be negligible, for times such that 

~-(t) -= 0(cro + 1/1Ugl) exp(2t]fg[) ~ a 2 (2a) 

(where 0~r0 is the width of the initial distribution and Ug = U" (x = 0)), the 
corresponding time 

to - 21C~;[ Log o0 + (2b) 

giving the order of magnitude of the time necessary for P(x, t) to split into 
two well-separated peaks located in the wells of U. That is, to would be, in 
this simple one-variable model, the characteristic onset time of the equilibrium 
(or stationary state) type of structure for P. 

He claims that, in this regime, P depends on t only through the variable 
r(t), i.e., P - Psc(x, -c), and defines P~o with the help of a procedure of 
matching at small times. 

3. Moreau ~6~ has used the expression for P(x, t) in terms of an Onsager- 
Machlup functional integral, ~7~ which he calculates, for small 0, by a stationary 
phase method. This amounts to keeping only the contributions of the paths in 
(x, t) space that are close to the path of extremal action. 

He finds a sound physical answer, with relaxation toward equilibrium, 
for potentials U with a single minimum. However, for bistable U, if his result 
does account for relaxation toward local equilibrium in each well separately, 
it does not describe the relaxation toward global equilibrium. His approxima- 
tion should therefore be improved to describe the possibility of escape from 
one well to the other. 

This type of problem, well-known in field theory, where it is called 
"tunneling between two vacuums," has been solved, in the language of 
functional integrals, in terms of the instanton theory38~ It has been shown ~'9~ 
that the same results can be obtained from the associated Schr6dinger equa- 
tion with the help of the WKB approximation adapted to a tunneling problem 
(this equivalence holds even for a many-variable system). 

In order to get a systematic approximate expression for P(x, t) valid for 
small 0, one can therefore use either of these equivalent methods: (i) the 
instanton theory if one starts from the Onsager-Machlup formulation; (ii) 
the WKB method if one uses the equivalent Fokker-Planck equation. 

In this paper, we choose the second approach, which we believe, probably 
on the basis of previous addiction, to be slightly more transparent. This will 
enable us to obtain, for a general bistable potential, an explicit expression for 
the normal mode decomposition of P(x, t) for times t ~> (lUg[-1, (U~)-z,  

U , ,  ~ - l~  , '  " " ( o, ~, where Uo, U~, and Ub are the curvatures of U at its extrema. This 
result extends explicitly those of van Kampen and of Tomita et al. (for the 
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small-0 case) into the intermediate time regime. Therefore, it provides a basis 
for discussing the scaling treatment of Suzuki. We show that Suzuki's time t 
does give some qualitative information about the time it takes for a distribu- 
tion starting from the instability region to build up a two-peak structure. 
However, we find that there is no true time scaling, in the sense that, even in 
the intermediate regime, P is not a function of the single time variable ~- for 
all x's: this is the case only far enough from the extrema of U. So, Suzuki's 
expression for the distribution does not describe properly the shape of the 
peaks when these have developed enough to approach the minima of U. 

2. THE  A P P R O X I M A T E  S O L U T I O N  IN THE I N T E R M E D I A T E  
A N D  FINAL R E G I M E S  

Setting in Eq. (1) 

P(x, t) = e-rl(x~I2~ t) (3) 

we find that the equation of  evolution of G(x, t) takes the Schr6dinger-like 
form 

0 OG(x, t)/Ot = [0 2 ~2/~x2 - V(x)]G(x, t) (4) 

where 

is(l~ 

v(x) = � 8 8  2 - ~ou"(x) (5) 

The solution of  Eqs. (3)-(4) that satisfies the initial condition 

P(x, t = 0) = 3(x - x0) (6) 

U(xo) U(x)} (7) P(x, t Ix0) = exp ~00 ~ 9,~(Xo)%,(x) exp - tA. 
n~O 0 

The ~o~ are the solutions (regular for Ix[ -+ oo and normalized) of the eigen- 
mode equation 

- 02 d29,/dx 2 + Vq~, = A,9, (8) 

with eigenvalue ),, (n = 0, 1 .... ). From the equilibrium solution 

Peq(x) = Ce- v(x>lo (9) 

of Eq. (1), we immediately know the exact lowest eigenmode ~00(x ) = 
C lt2 e x p [ -  U(x)/20], which of  course corresponds to A0 = 0. The other A,/0 
(n >/ 1) give the inverse normal relaxation times of  the system. 

Let us first consider the structure of the potential function V(x) associated 
with a bistable U. From definition (5) it is clear that, for small 0, (0 << AU), 
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Fig. 2. The potential V(x) associated with 
U(x). Here I, II, III, I V , . . .  label the different 
ranges of definition of the eigenfunctions. 

l 
V{x} 

I . ~ v ~  IF i2 , ~VL/% 
---y ii ,r--y = 

l 

Vexhibits three minima (Fig. 2) located close to the three extrema of U. More 
precisely, it will appear in the following that, in order to be consistent with 
our approximations, we only need to know each of the characteristic param- 
eters of V at its minima (position of the minima, values of V and of its curva- 
tures) to lowest order in 0..That is 

V ( x )  ~ ! a r t , ,  ~_ (10) _ - 2 v ~  + �88 - x+) 2 for x & 

with x~ = b, O, or a. 
In order to get an estimate of the orders of magnitude of the first of the 

An, we calculate the "energy"  levels of the three harmonic wells corresponding 
to the three valleys of  V. From Eq. (10) we find 

h ~ )  1 f l  T U  t = - ~ v , ~ ,  + OlU' ; l (p  + �89 p = O, 1, 2 .... (11) 

The lowest of these levels are given by i = a or b and p = 0, with 
~c0a'~) = 0: there always is, even for an asymmetric U, a double degeneracy 
of  the lowest harmonic levels in wells (a) and (b). [Quite obviously, this result 
would remain true to higher orders in 0, since it only expresses the fact that 
e x p ( -  U/20) is the exact lowest eigenfunction of  Eq. (8).] 

From these remarks, it is clear that one may distinguish among three 
different regions for the values of the An, i.e., among three time regimes: 

(i) The tunneling coupling between the two lowest harmonic levels will 
lift their degeneracy: the two resulting levels will have an exponentially small 
separation ;~1 - ~o, controlled by some "activation factor"  e x p ( - A U / O ) .  

Therefore t >~ ~1 = (~1/0)-1 will define the final or Kramers regime. 
(ii) The next excited levels have ~ values of order 0I U;' 1. They control 

the time variation of  P(x, t) in the intermediate regime defined by ]U~']- 1 ~< 
1 < <  r 1 . 

(iii) The levels with a's comparable to V,, ,., ( A U / a )  = or larger become 
important in the initial regime t ~ O(a/AU) 2. In this regime, the normal mode 
expansion (7) is not well suited for obtaining a simple description o f  P,  which 
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instead can be calculated from Eq. (1) where U is developed up to second 
order in the vicinity of x = 0. In the transition region between [U~'[ -~ and 
O(a/2xU) 2, as shown by van Kampen, (~) no clear statement can be made. 

From now on, we shall only concentrate on the intermediate and final 
regimes. 

We want to solve Eq. (8) in the small-0 limit. This immediately suggests 
that we must use the WKB method (the role of h in the usual Schr6dinger 
problem being played here by 0). 

We are only interested in the low-lying levels, for which ]A - V[ _ 0[ U~'[ 
in the vicinity of the bottoms of the three wells of V(x), where the WKB 
expression for the ,p, is therefore not valid. Fortunately, in these regions we 
may safely approximate V by harmonic potentials [Eq. (10)], for which there 
exist exact solutions that we want to match with the WKB solutions. The 
matching technique, which is equivalent to that of Miller and Good, (1~ is 
developed in detail in Appendix A. Its principle is the following: consider, for 
example, the matching between regions II and III (see Fig. 2) around the 
turning point at x =/3. Region II is defined as the quasiharmonic region 
around x = b, where Vis given by Eq. (10), and region III is a WKB region, 
(V(x) >> h). The wave function has the following form for region II: 

~o(x) = A ~ D ~ ( ( x  - b)(U'~/O) ~/2) + B ~ D ~ ( - ( x  - b)(U~/O) ~I~) (12) 

V(b)]/OU~ - 1/2 = A/OU~, and Dv is a Weber function; and 

[ 0 1112/ I~ /dx '  [V(x') - ~]112) 
~o(x)= [V(x)-  h] l'z] ~Amexp T 

frXdx' }) 
+ B m  e x p \ - j ~  T [V(x') - a] 1/2 (13) 

For small 0, regions II and III overlap in a domain where (x - b)(U~/O) ~/2 
>> 1, so that one can use the asymptotic development of the Dr, and where the 
phase integrals in Eq. (13) can be calculated with the quadratic expression 
(10) for V. As is shown in Appendix A, a comparison of the two resulting 
expressions for ~0(x) determines uniquely Am and Bm in terms of A~ and B~. 

Note that, contrary to what is asserted in many textbooks, it is therefore 
possible, with this method, to determine, not only the coefficient Am of the 
exponentially increasing function in the classically forbidden region III, but 
also that of the exponentially decreasing component. This is due to the fact 
that using the full asymptotic development (including exponentially small 
terms) of the Weber functions amounts to taking advantage of the full 
behavior of ~o(x) in the complex x plane around the turning point(s). (1~) This 
matching procedure can be repeated in the vicinity of the three minima of 

where v = [)t - 
for region III 
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potential V separately (since these minima are separated by " g o o d "  WKB 
regions). To build the wave function of an eigenstate, we start from region I, 
where only the increasing (for increasing x) WKB exponential is present; we 
perform these successive matchings and impose that the increasing WKB 
exponential be absent in region VII (Fig. 2). This condition, which determines 
the A eigenvalues, reads 

e 

(2~)112 [ e ]~+1/2 
- cos  cos  

(2w)1'2 [ e ~e+1/2 

- e-2Cs~(x)+so (a)~ cos rc~: cos try sin 2 ~r# ~ [/~ + 1 = 0 

(14) 

where v ~- A/OU~, ~ = (A/O lUl l )  - 1, ~ = )~/OU'~, F is the Euler gamma 
function, and Sb()O is defined by 

(~ dx '  
&(A) -- da -F- [V(x')  - A] 'L  A < olu;]/2 (15) 

= [-~ dx' 
da --0-[V(x') - ,X] 1/2, A > 01U'~l/2 

where the classical turning points fi and - ~  are shown in Fig. 2, and S~(A) 
0 ce 

is the corresponding quantity for the x > 0 part of potential V (re -+ fo and 

f/-+f3. 
It is clear from Eq. (14) that, since exp[-2S~(~)] and exp[--2Sb(A)] are 

small quantities, the solutions for 2 will lie in the vicinity of the points where 
at least one of ~, v, ~ is a positive integer or zero, i.e., obviously, in the 
vicinity of the harmonic energies given by Eq. (11). 

3. KRAMER'S REGIME 

U" -1 i.e., As already mentioned, this regime corresponds to times t >> , , 
it is determined by a knowledge of the first two levels of potential V, which 
result from the lifting of the degeneracy between the (b, 0) and (a, 0) harmonic 
levels due to the tunneling coupling. 

Therefore they correspond, in Eq. (14), to v and ~: _~ 0 and/z _~ - 1. One 
can first check directly that ,~ = 0 (i.e., v = ~ = 0, /~ -- - 1 )  is an exact 
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solution of Eq. (14). That is, our approximation reproduces, as it should, 
the correct zero value for the lowest eigenvalue ~0. The corresponding wave- 
function 90, as given by our calculation, is of course the local approximation 
[Gaussian in the (a) and (b) wells] to the exact 90 = C 1f2 exp[ -  U(x)/20].  

In order to calculate the eigenvalue A1 for the first excited level, we 
develop Eq. (14) up to second order in exp(-2S~) and exp(-2Sb), which 
gives 

AI = (O/2zr)[U'~e-2So (~ + U'~e-2Sb ~~ (16) 

The quantities S~(0) and S0(0) are calculated in Appendix B to be 

1 it tt s , (o )  = ( A U d 2 0 )  - ~ l o g ( l U o l / U , )  (17) 

where A U, = U(0) - U(i) ,  i = (a, b). 
This gives for the inverse Kramers time 

1 _ 11 = 1 [(U;[ U;l)~/2e-~V~ '~ + (U;[ U;l ) l '~e -~ :b  '~ (18) 
rl 0 27r 

Some comments about our expression for zi- ~ may be useful: 

(i) In the case of a symmetric bistable U, Eq. (18) reduces to 

1 = 1 (U;I U;l)l/2e_A~,o (19) 
7" 1 77" 

This is exactly the expression obtained using Kramers' method of resolution 
of his equation in the high-viscosity limit, (1,4~ where it reduces to Eq. (1). 

(ii) For an asymmetric U, the expression for r~ is completely symmetric 
with respect to the interchange a _+~ b. This is obviously related to the fact that, 
as appears from the general expression (7) for P, it is the single time rl which 
characterizes, at long times, the escape of particles from well (a) to well (b) 
as well as the reverse process. The fact that ~-i -~ is the sum of two chemical 
activation rates for wells (a) and (b) is general: this result can be derived 
directly from the two phenomenological equations, valid in the Kramers 
regime 

d n d d t  = - n ~ W ~ o  + n b W o ~ ,  dno/dt = n , W ~ b  - n o W o ~  (20) 

where n~ and n0 are the numbers of particles in wells (a) and (b), and the W ' s  
are interwell transition probabilities. From Eq. (20) one gets 

1/-1 = W~-~b + W0~ (21) 

which is equivalent to expression (18) is one chooses for the W's the values 

W~ i = (1/r2~r)(U~'] U~l)~12e-"W ~ (22) 

which of course satisfy the detailed balance condition. 
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(iii) An analogous result for zi -~ has been obtained by Tomita et al. (3) 
However, their prefactor differs from that of Eq. (18) by a factor 2/~/~. We 
believe this discrepancy to result from the fact that they use the WKB form 
for go~(x) in the quadratic region x ~ 0, where it is not valid, instead of the 
Weber function expression. 

4. T H E  I N T E R M E D I A T E  T I M E  R E G I M E  

This regime, as has been seen in Section 2, corresponds to times [ UTI - 1 
t << zl, so that it is determined by a knowledge of the excited levels (n) of 
potential V with h values of order p0[ U~'[ (with, of course, pO i UT[ << V~, i.e., 
p << AU/O). These states are those that derive from the approximate harmonic 
levels h(~ ~ with p = 0, 1, 2,. .  and ,,p,~(~), A(pb, ), with p' = 1, 2,..., which energies 
are given by Eq. (11). 

We consider here the case of a general bistable U with no particular 
symmetry, so that the harmonic states of interest are not systematically 
degenerate (we neglect the case of accidental degeneracy). 

Let us call ~o~)(x) the eigenfunction of the state deriving from the (p, i) 
harmonic state. We can build ~0}~), which has a large amplitude in well (i) 
only, by the same matching procedure that we used to build the fundamental 
and first excited states ~o 0 and ~ol. The corresponding algebra is presented in 
Appendix C. 

We are interested here in checking the scaling statement of Suzuki. (a) In 
order to compare our and his results, we must consider the case where the 
initial distribution is concentrated in the vicinity of the point of instability of 
U (xo ~- 0), i.e., in the (0) well of potential V. Moreover, we will only study 
P(xt Ixo) for x < 0 (the case x > 0 would be completely analogous). 

It appears from the calculation (Appendix C) that, as expected, the h 
eigenvalues corresponding to the ~o~ ) only differ from the harmonic values h~ ~) 
given in Eq. (11) by exponentially small terms due to the tunneling among the 
three wells of V. For all levels with ~") r 0 these differences can be neglected ~ p  

in the corresponding time exponentials of the development (7) of P, which 
can therefore be written, in this regime, 

~oo(X) P(xt lXo) = Pnn(xt [Xo) + 

+ r,  ~?'(x)~?'(Xo) 

+ ~ ~4~176 
p > ~ l  

{ ~  % ( )% (Xo)exp[-(p + ~,~o (~ (o) 1)]e;lt] 

exp(-pU~t) 

exp(-pU~t)} (23) 
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The sums on p run on indices p << AU/O (the contribution of higher levels 
being negligible in this time range), and 

~%(x) 
Pnn(xt IXo) = [~Oo(X)] 2 + ~ ~o1(x)q)z(Xo)e -tnl (24) 

and, since we are interested in times t << ~-~, 

Pnn(xtlxo) ~ P,~n(x, t = 0]Xo ) (25) 

is a time-independent quantity. 
Since we consider Xo -~ 0, x ~< 0, the (a) sum on the rhs of Eq. (23) is 

negligible" indeed, @a)(xo) [resp. ~o(va)(x)] is exponentially small as compared 
with @~ [resp. @~ Their ratio is of  order exp[-S~(h(p~))] where 
iOS~(h(p ~)) is the classical action corresponding to the crossing of the forbidden 
region between wells (a) and (0). 

Let us first consider the three following cases: 

(i) x in the (0) well o f  V." The time dependence of P is entirely controlled 
by the sum corresponding to q~o) states [the (b) sum in Eq. (23) is exponentially 
small compared with the (0) one]. In this region (see Appendix C), up to 
exponentially small errors, 

qCpO)(x ) = (p !)-1/2(1U;I/Z~rO)Z/4Dp(x(l U;]/O)I/2), ,~o) = (p + 1)0l Uo) (26) 

so that 

where 

P(xt [xo) ~ Pf~o(x, t = Olxo) + ~ \7-g-0-] 

( ([~o1)1/2 ( [ ~ ) ~ / 2  P[ lUg]] ) x F (~ x ,Xo ,ex - t  (27) 

1 
F(~ z, e x p [ - t l U ; l ] )  = ~.. ~. D,(y)Dv(z)[exp(- t]U;])]  "+1 (28) 

p~>0 

Note that Pfin also contains a normalization factor proportional to 0-1/2 
(since, to lowest order, both ~0 and ~ol are combinations of Gaussians of 
widths proportional to 01/2). 

(ii) x in the (b) well o f  V: In this region, the two (0) and (b) sums on the 
rhs of Eq. (23) give comparable contributions, since each term contains one 
exponentially small factor. The successive matching procedure (Appendix C) 
gives, for x ~_ b, 

~o~~ = A,D~<,)[(x - b)(U;/O)Zl= l (29) 
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where v(p) = (p + 1)I U~I[U's is a noninteger since we exclude accidental 
degeneracy, and 

/rfolXl,4 /ISol] / [Ub(Xra --  a)2"~ v(:~ A. = (-) ' (pl)-1/2/ '  ' I  F(-v(p))  ,' 1 2 " 
- ~ - ~ 0 /  (2~) "2 \ - - ~ ; 1  \ -0- ! 

x ([S'~]-~Xm2) ('+1)12 { AUb } 
- -  exp 20 (P + I)I U;lS (30) 

Xm is the point at which V reaches its local maximum Vm in the x < 0 region, 
and S is a geometrical parameter which characterizes the local anharmonicity 
of potential U: 

f;~ ( l 1 ) f ~ ( 1 1 ,] (31) 
- dx  U ~ x )  x U o !  a = -  dx U ' ( x )  ( x  - b ) g ;  x.. 

In the same way, we find, for x in the (b) quasiharmonic region, and with 
~,~, = pOU;, 

@V'(x ~- b)  = (p!)-zI2(U;/2~rO)Z/SD;((x - b)(U;/O) ~/2) (32) 

which is continued, for x in the (0) quasiharmonic region, by 

/,r,,x~/sp( (U;(x b) 2) ( ~ )  ~o(,b>(x ~ O) = (p) ) -  " ~  / ~ b | _ ~(p))  _ , , / ~  r.~,~ + ~J l2  
- " \ 2 , , o i  (2,~)~,~ m 

"3 x {exp( AU~20 pU~ ) } D , ( , , ( x ( ] ~ )  ~/2) (33) 

and/~(p) = (pU'~/l U;I) - 1. 
So, finally, we can write 

9o(X) / rr,, \ ~12 | ' - 'hi e-AUb 12~ P(xt]Xo) = Pr~(x, t = Olxo) + ~ ~2~o/ 

L,o, fx [Iv;l~ "~ (x zv~x-~ 
, 

/U;\112 %'))1 (34) 

where 

r z,  -%) - lug[ ~o (-)~ r(-~(p)) U~ ~ p] (2~r)1/2 Dv(y)D~o,)(-z)'r~(~'+l)i2 (35) 

~1 1 P(-~(P)) 
r z, -,-() = ~-! (2~r)1/2 n.(p)(y)np(z)(.r()-m (36) 
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and the time variables zb, zb' are defined by 

( 0 t ( 0  1 ~b = ~ g'~(Xm - b) 2 Ir:~ (37) 

( ~ ) ~ , ; , , ~ , o , (  0 ) 
"%' = U'~(Xm - b) 2 e2(t+~ = ('rb)rygllU;I (38) 

So, r + r can be rewritten as a function H(y, z, "cb) of the unique 
time variable rb given by Eq. (37). 

(iii) x in the WKB region between wells (0) and (b): Coming back to 
expression (23) for P, one can notice that the contribution p(o) of the ~0~ ~ 
terms spreads everywhere between the (b) and (a) wells: indeed, the exponential 
decrease of ~Oo(X) when going from, e.g., well (b) to well (0) is compensated by 
the exponential increase of ~o~ ~ Moreover, for Xo ~-O, q~~ 
exp(AU/20), while cp(p~ ~ exp(--AU/20) (for all b ~< x ~< a). 

On the other hand, q~(~b)(Xo)/~Oo(Xo) ~ 1, while ~v~b)(x)%(x) is of  order 1 
[as far as powers of exp(AU/20) are concerned] in the (b) well, and of order 
exp(--AU/O) for x ~-- 0. 

So, the contribution p(b> to P of the ~o(p b) terms is essentially concentrated, 
as well as Pfin, in the vicinity of point b. Therefore, in the WKB region, 

ewrzB(xt [Xo) --~ e(~ Ixo) - ~~176 ~Oo(Xo ) ~, ~o(p~176 + 1)t[U~[] 
p~>O 

(39) 

Using the technique explained in Appendix C, we find in this region 

U(x) - U(xo) exp ( -  (p + 1)3'(x) I Ug[) (40) x exp 20 

with 

3'(x) = ~  dx' (x' l '~ U~x')) (41) 

From this, we get 

~ lUll ~ D, Xo ew~Ixtlxo) = (2~)~/~U,(x),,~o �9 

x { ( ~ )  ~'2 exp( -  t ] U~])} "+~" 

x {Ibl  exp[ - [  U;[ 3'(x)]}'+a (42) 
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It is clear from this expression that, in the WKB region for x, the true 
time variable is the quantity 

-r = (O/U~]b 2) exp(2tlU~D (43) 

i.e., as shown by Suzuki, (~ in that region, where the drift effect dominates 
over the diffusion one, there is a true "t ime scaling" of P, in terms of the 
dimensionless time variable % which is exactly Suzuki's variable. 

The p sum in Eq. (42) can be performed exactly (since, in the present 
time regime, it can be extended up to p ~ ~ with a negligible error). In 
order to simplify the resulting expression, we choose, following Suzuki, 
Xo = 0, and get 

pwrzB(xt]O) ~_ exp[-lU'~]3'(x)] ' U'~x ' ( x2_2__~ r } (2~r~') 1/2 bU'(x) exp exp[-2]Uo]3'(x)] (44) 

In the particular case of the quartic potential U(x) = -�89 - �89 where 

3'(x) = (1/27)log]l - x2l (45) 

this becomes 

1 x 2 
p(Q~ r~, ~ (46) wxm~-, 10) = (2~r~_)1/2(1 _ x2)a/2 exp 2,(1 - x 2) 

i.e., exactly the "scaling distribution" found by Suzuki for this potential. 
Let us, however, insist that the above results [Eqs. (42)-(46)] only hold 

in the region where the WKB approximation is valid (i.e., in the region where 
the drift force is dominant). They break down for x in the close vicinity of 
the extrema of U, as can be seen from both Eq. (28) and Eqs. (34)-(36). 

For xo = 0 [or Ix0[ ~< (O/lUll) 1/2] and Ix[ ~< (O/]Uo[) ~/2, P is given by 
Eqs. (27)-(28) with y and z of order 1, so that the characteristic time is clearly, 
in that region, of order [U~]- 1, i.e., much smaller than Suzuki's time to [Eq. 
(2b)]. 

For ]Xo] ~< (0/I U;I) ~/~ and !x - b] <<. (O/U;) 1~, P is given by Eqs. (34)-(36), 
where, again, y and z are of order 1, and the characteristic time scale t~ is 
given by ~'b = 1, where r~ is given by Eq. (37), i.e., is proportional to 
01 + i tT;f~v;, while Suzuki's variable ~- is proportional to 0. So, it is seen that the 
characteristic time t~ is always larger than to, although both lie in the same 
intermediate time domain. 

Therefore, Suzuki's result will be a good approximation for P as long as 
the part of the distribution that lies in the vicinity of b and on the left of it 
[x - b ~ (O/U;) 1/2] remains negligible. This can be estimated by calculating 
the weight of that part of the distribution lying between x ~ 0 and x = b + c,, 
where ~ ~> (O/U~) v2, in whicl~ region P is Suzuki's distribution (44). 
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Setting 

u 2 = (x2/2b2. 0 exp[ -  21U~; I S'(x)] (47) 

we obtain from Eq. (44) 

PwK~(xt 10) dx = (1/V'g) e x p ( - u  2) du (48) 

i.e., one can notice that, in the Suzuki regime, the true scaling variable, in 
terms of which P has a universal Gaussian form, is u, and not, separately, 
~- and x. 

On the other hand, from Eq. (41) 

3'(b + ~ ) ~  -(1/U~')log(b/c 0 (49) 

so that 

1 1 ~ [ 1 ~:61/er; l 

So, as long as 

<< (b/~)2J~:~:; <~ (b2U;/O)~:~t~; 

the WKB region contains practically all the weight of P, and i t  can be con- 
cluded that Suzuki's statement, as generalized by Eqs. (44) and (47)-(48), is 
essentially exact. 

This breaks down when ~-~> (b2U's fv;J/v;, or, equivalently, when 
~b ~ 1. This corresponds, in the intermediate time regime, to the time 
domain where the peaks of the Suzuki distribution enter the diffusive region 
around the minima of U. For ~b - 1, the shape of the peaks of P should 
therefore be calculated numerically from the full expression (34)-(36). 

Note that this discrepancy with Suzuki's prediction should not show up 
very much in a calculation of the second moment of P around x - 0, (x2), 
since, for ~'b ~ 1, the distribution already exhibits rather well-defined peaks 
around the minima. A better test would be to calculate ((x - b) 2) for the 
x < 0 p a r t o f P .  

Finally, it can therefore be concluded that Suzuki's prediction correctly 
describes the evolution of P in the first part of the intermediate time domain, 
in which the distribution leaves the x = 0 diffusive region, with a characteristic 
time 

to ~ (1/21 U; l) log([ U'glb2/O) 

The drift region is then passed relatively rapidly; then, in the second part 
of the intermediate time domain, P enters a new diffusive region [x _~ b (or a)], 
with a characteristic time 

to' - (1/2U~)log(U'~b2/O) 
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The total time scale tb for obtaining peaks of width comparable with that 
at equilibrium around b is 

tb = to + to' 

which corresponds to Tb -- 1. 
The order of magnitude of to and to' is precisely the same as the time 

needed for a distribution starting from a finite distance [of order (O/U") ~ 
from the minimum of a harmonic potential to build the equilibrium shape in 
the vicinity [of order (O/U") 112] of that minimum. 

A P P E N D I X  A 

We want to calculate the first two eigensolutions of the equation 

- O 2 d2~/dx ~ + V(x)~(x) = A~o(x) (A1) 

where 

V(x) = �88 2 - �89 (A2) 

is depicted in Fig. 2. We know that the two lowest eigenvalues Ao and hi 
will be exponentially close to the lowest harmonic eigenvalue: A(o b) = h(o a) = 0. 

1 tt  So, we have ho, hi < V(0) = ~0 IUo]. 
In order to build ~o(x), we start from the WKB region I (see Fig. 2), where 

[ 0 ]1,2 ( f X d x , [ v ( x , ) _ A ] l l 2  } (A3) 
~oi(x) = K1 [V(x) -  ~]1j2] exp \~ , - -0 -  

fi' is the turning point on the left of b, and K~ will be calculated from the 
normalization condition. 

We want to match expression (A3) with the solution of (A1) in the 
quadratic (b) region II, which is 

q~z(x) = K~D~(-yb) + K~zD~(yb) (A4) 

with v = A/OU'~ and y~ = (x - b)(U'~/O) ~12. The D~ are Weber functions. In 
the matching domain, where regions I and II overlap, Vis still quasiharmonic, 
and expression (A3) can be calculated with 

g ~" 1ATltt  --~,,,~b + �88 - b) 2, (8' b) 2 = (20/U;)(2,, + 1) (A5) 
Using 

1 s  dx' [V(x') . . . .  A] 1/2 (x -40b)~U"b + (v + �89 log] (x b) ( U ; )  1 / 2 -  [1 

+o(o, (AO  
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we obtain [since V(x) >> A] 

140\1/~i e \<112xv+1/2> (-g-~-) 
~o, =~ K ~ t ~ -  ) tv---~21) lybl v exp - (A7) 

In the matching region, Yb >> I, so that we can use in Eq. (A4) the complete 
asymptotic development of the Weber functions <1~ for y real 

D~(Iyl) % e-y2/~lyiV[1 + O(y-2)] 

D~(-INI) ~ eY2'4[yI-'-lI(2,01'2/P(-~)][1 + O(y-2)] (A8) 

+ e-~2/~lyl ~ cos ~ [1 + O(y-2)] 

Inserting (A8) into (A4) and comparing with (A7), we obtain 

K~ = KI ~-~ \v +-----~J , K~z = 0 (19) 

We must now match 9xz(X) with the WKB expression 

cpm(x) = [[V(x) O 1~/21 ( gX dx' 1]~,2} - h]~,~] [ K ~ e x p ~ j .  --0--[g(x')- 

+ K~II exp - - ~  

The same procedure as above [calculate the integral in (A10) in the quadratic 
approximation, develop cpz~ with the help of (A8)] can be used again, and gives 

g I I I =  lxI ~ , g i I I =  gI  COS "ffTr (AI 1) 

We can rewrite 9m as 

[[V(x) 0 1J-/2, { f d x ' [ v ( x , ) _ h ] , , 2  } . _ 0  9re(x) = - A]1/2] [Km exp[Sb(A)] exp - 

+ KIII exp[-- S0(A)] exp -if- [V(x') - A] ~/2 (A12) 

with s 
Sb(A ) = dx' [V(x') - A] ~/2, I < V(0) (A13) --U 

This we must match with the solution in the quadratic (0) region 

9~v(x) = K~vDu(-y) + K~vD,(y) (A14) 

where y = x([ Ug]/O) ~I2, and t~ = (A/0] U;I) - 1. 
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Repeating once more the matching procedure, we get 

/ 4 0  \1/~ p(_/x)  ( ~ _ ) c l / 2 ~ , + l J 2 , ( 2 r r )  1/2 

_ [ 40 \~'~((2~r) ~/2 [ e ' ~ v + a ' 2 i e ~ ( 1 / 2 x , + l / m e S C a  , 

(A15). 

where we have taken into account the fact that, for the states of interest here, 
/x _~ - 1, i .e. , / ,  + 1/2 < 0. 

These matchings can be repeated until the WKB region VII on the right 
side of well (a), where one must impose that the coefficient of the increasing 
WKB solution be zero. This gives the condition which determines the eigen- 
values ,~ as 

(27r) a/2 [ e '~r e '~v+112[ e ~u+z/2 

r ( - . ) r ( - ~ ) r ( -  e) \?-4-~:/ \~--;--~:1 ~ 1  

(2~)*;=( e '~"+*/= 
- e-~o'~" cos  ~-~ cos  ~-~ ~ \ ; - U ~ I  

(2~r)1/=( e ) e+l/= 
- e-=,~<a~ cos  =v cos  , , / .  ~ 

- e-2ts=a~+sr a~J cos rr~: cos try sin ~r/* (2~r)l/------g ~ = 0 (A16) 

where ~ = a/OU'~. 
We look for the two solutions of (A16) with 1/01U~'J << 1. One can first 

notice by mere inspection that, since [P(0)]- * = 0, a0 = 0, which corresponds 
to v = ~: -- 0, /* = - I, is an exact solution of (A16). In order to find t l ,  
we develop the equation up to second order in e x p ( - 2 & )  or e x p ( - 2 & )  
(knowing that t l  is of that same order of magnitude). With the help of the 
development [ P ( -  ~)]- * = - �9 + O(e2), this gives 

)h = (O/2rr)(Uge- 2s=(o) + Uge- 2so(o))] (A17) 

One easily checks that ~Oo is proportional to e x p [ -  U(x)[20], up to exponen- 
tially small errors. In order to normalize 'po, we approximate it by 

~Oo,zz(x) + ~o,w(X) = Cll~{e - v(b)l~~ + e-  v(~)/Z~ (A18) 

where C ~/~ is related to K~,o [Eq. (A3)] by C 1~ = KLo(8eO/U;) ~ .  Expression 
(A18) is simply the sum of  the Gaussian developments o f e x p ( -  U[20) around 
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the minima of U. This approximation is sufficient to calculate the normaliza- 
tion coefficient up to exponentially small errors. We get 

C ~- (2rrO)-l/2[(U~)-ll2e-V~b)/~ + (U'~)-l/2e-V{a)/~ (AI9) 

When we calculate 91, we found that in region II 

q)l,H(x) = KI,~(40/ Ug)II4(2e)ll4 D u ( -  Yo) (A20) 

with vl A lOrr" = 1/ ub, and an analogous expression involving Du(y~ ) in well (a). 
In view of the divergent asymptotic behavior of D u ( - y  ) for y >> 1 [Eq. 
(A8)], it is seen that we cannot simply approximate in the whole space q~ by 
~o1,~ + 91.w. However, since vl is exponentially small, it can be shown that, 
in the quadratic (b) region II, D~(--yb) is equal, up to exponentially small 
terms, to Do(-yb).  This can easily be checked, for Yb >> 1, on the second 
equation (A8), where it appears that the increasing term is much smaller than 
the decreasing one in region II. Since ~oz is exponentially small outside regions 
II and VI, we can safely calculate the normalization coefficient of 91 with the 
approximate expression 

cpl(x) ~= ,~Do(yb) +/3Do(ya) (A21) 

This gives 

= Cll2e - t~(~/2~163 1/4, /3 = - C1/2e- ~(b~/2~ (A22) 

that is, 

KI.I = (U'~/8eO)ll~C~/2e- v(~/2~ (A23) 

A P P E N D I X  B 

We want to calculate 

Sb(O) = (1/O)fBidx' [V(x')] ~/2 (B1) 

where (rio - b) 2,= 20lUg. 
Let ~: and ~ be two cutoffs situated in the overlap domain between regions 

II and III and regions III and IV, respectively, i.e.,/3o < f < ~7 < 0. Now, 
(resp. ~7) lies in the (b) [resp. (0)] quadratic region, i.e., 

V ( X )  I,~ l O T f  tt = - - 2 ~ , ~  + � 8 8  - b )  ~ for /30 < x .< ~: 
(B2) 

v(x) ~ ~o[u;I + �89 ~ for  '7 ~< x < 0 

and 

(U')2 >> OU" for ~: ~< x ~< -q 
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so that 

[V(x)F ~ = 1U'(x){1 - OV"(x)/[U'(x)] ~} 

in that region. 
We can split S~(O) into three integrals: 

Sb(O) = / 1  + I2 + I, 

with 

and 

dx 0 U'~ b)2)112 

= l d e - b ] 2  1 l l o g 2 ( ~ : -  b) t 
2 kilo - b] 4 2 ~o b 

1s ~ ( ~  (u;)~ )~,~ 
I~-  -~ dx +---4- x ~ 

= - - W -  + ~ - 

(B3) 

(B4) 

(Bs) 

(B6) 

Ia~--O dx 2 2 U - - - ~ J  

1 1 ]v'(O I (B7) = 2--0 [U(O - U@)] - ~ log U ~  

For x _~ -q and x _ ~:, U(as well as V) may be considered as quasiquadratic: 

i T r t !  2 u(~) = u (0)  + 2~o~ + ..., v (~)  = U(b) + kU;(~ - b) = + "" (BS) 

Inserting Eqs. (B5)-(B8) into (B4), we find 

u(o) -  V(b) �88 ]e;l &(o) 20 log U~ (B9) 

&(0) is calculated by the same technique to be 

S=(O) = U(O)- U(a) 1 I Ug[ 
- -  - ~ l o g  U "  (B10) 20 

A P P E N D I X  C 

We want to calculate here the wave functions ~4~ (p > O) and 9~b)(x) 
(p I> 1) and the ~ values of the eigenstates of  potential V which derive from 
the approximate harmonic levels ~(po) = (p + 1)0[ U'~] and ;~b~ = pOU'~. Since 
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we only consider here the case where )6p ~ h~ ), and h~b) are nondegenerate, 
these states are essentially localized in wells (0) and (b). Among them, those 
with h values larger than V(0) have six real, classical turning points (instead of 
four real ones for, e.g., states ~oo and ~ol). 

We build the wave functions by the same matching method that we used 
in Appendix A for % and go1. It is found that the wave functions are always 
given by the same expressions as those found for ~, < V(0) [Eqs. (A3)-(A4), 
(A9)-(A11), and (AI4)-(A15)], where now Sb(;~) is defined by 

Sb(h) = [V(x) - hl ~2 for h > V(O) 
(C1) 

f f  ?,]~/2 V(O) 
dx 

= --0- [V(x) - �9 for A <  

The quantification condition therefore keeps the form (A16). The 
q)~0) states correspond to solutions with/z close to a positive integer or zero 
and noninteger v and ~, while the ~o~) states have v close to a positive integer, 
tz and ~: nonintegers. The corresponding shifts of the h values with respect 
to the h~ ) are found to be of order exp[ -  2S(a~))]. 

From this, one easily checks that the normalization coefficient can be 
calculated (as explained in Appendix A in the case of ~01) in the approximation 

go~)(x) ~- KD~,(y,) (C2) 

This finally gives, in the regions of interest for checking Suzuki's scaling 
statement, 

x {exp[-Sb(h~~ (C3) 
/ I f n  l \ l l  4 / ~ -L  1 \ ( 1 1 2 ) ( p + 1 1 2 )  

(0) ~%,IH(X) = (--)"C~~ ' ~  iF  ~ 2 / 
t- l t--U-I 

x (exp[--Sb(h~~ 0 ~0)]1,2] lsz 

d x '  [ v ( x ' )  - + c o s  x exp T 

( f,) dx' tv(x,) - (C4) x exp - T 

(0) ~,,iv(X) = c~~ (C5) 
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v U" " c~ ~ where =-- v(p) = (p + 1)[ ol/Ub, = (p!)-11~(JU~J/2~rO)U~, and, for 
states localized in well (b), 

cp(vb~i(x ) = c(vb) Dv(yb) (C6) 
/ r r , , \  l i 4  / ,, -L •  (ll2)(v+ Zl~)r ]115 

~ , ~ , ( x )  = c ? ~ / ~ ' q  / ~" ' ~ t  b 0 
\'4-if] \ e ] [ [ V ( x ) - A  (b)lz/2/ P -1 3 

+ cos mr exp[ - 2Sb(a~b~)] F ( -  if) 
(21r) 1/~ 

x exp -0-- [V(x') - A?~]u2 (C7) 

(b) ,-"( '~)/  ~ o } 

~,,,~(x) = ~ \lu';l! (2~) ,~  \ ~ /  ,,--b--/ 
• {exp[-So(h~)]}Du(y)  (C8) 

where ~ -= ~(p) = (pU'~/I U~I) - 1 and c(~ ~ = (p!)-~/~(U'~/2~rO) TM. 

In order to calculate S~(h), we proceed as in Appendix B. Let us as an 
example give the details of the algebra for the case h > V(0). We introduce 
again the two cutoffs ~ and ~ defined in Appendix B. We split S~(h) into 

S~(h) = /1 + Is + Ia (C9) 

with 

�9 l~ f  (2 - b)~ 
= r + " ~ u d -  ~ 

_ (- ax 

,'~ = ~o -~  \---r  

tt 11/2 O U b 2~ 
2 

1 1 ]2(~e - b) ! } 
4 2log -~-_.-~ + 0(0) (CIO) 

x ~ + olu;12 a} 

= (2tz + 1) ~ ~ log + O(0) 

- r ' d x  ( U ,  OV'(x)  V2,(~x)) 

= 2-0 [u(n) - u ( @  + ~logJu-- ~ - ~ V'(x) 

( c  11) 

(C12) 
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We split the integral on the rhs of Eq. (C12) into 

U'(x)- dx U'(x) 

 ~ 
(1 11 (x - b)Vo! + dx V;(x) x ~  

x m  

1,1 ~ ~: - bl - ~ g ~ (C13) 

The intermediate point Xm can be chosen anywhere between ~: and -q. We 
take, for simplicity, xm to correspond to the local maximum of V. 

Noticing that 

f ~  ( 1 1 , , ' ~~1  U~ (C14) 
dx U~(x) xUo! = ~ '~ ( u ; )  ~ 

we see that the condition for neglecting such an integral [i.e., for extending 
the integrals on the rhs of Eq. (C12) to, respectively, x = 0 and x -- b] is 
precisely that ~ and ~ lie in the quasiharmonic regions, which corresponds to 
condition (B2). So 

AVb 1 (8-b)U'~ 1 IU~w2 uZ(~-b)~ 1 
13-~ 20 + ~log ~U~ + ~ ' 2 _ 

- (/x + 1) log + v log X--m-b + 0 S (C15) 

with 
o 

-b)U'~ U~(x)) + fx~, dx (xl~ U~x)) (C16) 

From which 

1( e 

+ ( ~ +  1) log \~-U-~] ] + v l o g  (xm- b) \vb! ] 
L m 

1 U~ 
+ ~ log lUll (C17) 

Finally, it is easily checked that, for states with four real turning points, 
Sb(A) is still given by Eq. (C17), with the simple transformation 

l~ tz + �89 ---~ l~ I ~  I e 
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